Search results

1 – 10 of 191
Article
Publication date: 1 April 2022

Prashil Desai and R.N. Jagtap

There is a rising demand for high-performance 3D printed objects that have established potential applications in the sector of dental, automotive, electronics, aerospace, etc…

152

Abstract

Purpose

There is a rising demand for high-performance 3D printed objects that have established potential applications in the sector of dental, automotive, electronics, aerospace, etc. Thus, to meet the requirements of high-performance 3D printed objects, this study has synthesized, formulated and applied a resorcinol epoxy acrylate (REA) oligomer to a stereolithography (SLA) 3D printer.

Design/methodology/approach

Different formulations were developed by blending reactive diluents in the concentration of 10%, 15% and 20%, along with the fixed quantity of photo-initiators in the REA oligomer. The structure of synthesized REA oligomer was confirmed using 13 C nuclear magnetic resonance (NMR) and 1H NMR spectroscopy, and the rheological properties for prepared REA formulations were also evaluated. The ultraviolet (UV)-cured specimens of all REA formulations were thoroughly examined based on physical, chemical, optical, mechanical and thermal properties. The best suitable formulation was selected for SLA 3D printing.

Findings

As perceived, UV cured REA specimens exhibit superior mechanical, chemical and thermal properties, portraying the ability to use as a high-performance material. The increase in the concentration of reactive diluents indicated a significant improvement in the properties of REA resin. The 20% diluted formulation achieved excellent compatibility with a SLA 3D printer; thus, 3D objects are cast with good dimensional stability and printability.

Originality/value

Resorcinol-based resins have always been a key additive used to enhance properties in the coating and tire industry. In a new attempt UV, curable REA has been applied to a SLA 3D printer to cast high-performance 3D printed objects.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 November 2020

Pundalik Pandharinath Mali, Nilesh S. Pawar, Narendra S. Sonawane, Vikas Patil and Rahul Patil

The purpose of this work was to develop a new trispiperazido phosphate-based reactive diluent (diphosphate-piperazine hydroxyl acrylate [DPHA]) and used as a flame retardant with…

Abstract

Purpose

The purpose of this work was to develop a new trispiperazido phosphate-based reactive diluent (diphosphate-piperazine hydroxyl acrylate [DPHA]) and used as a flame retardant with an epoxy acrylate (EA) in ultraviolet (UV)-curable wood coating.

Design/methodology/approach

The concentration of reactive diluent was varied from 0% to 20% in the UV-curable formulation with constant photoinitiator concentration. The effect of DPHA concentration on film properties was studied by differential scanning calorimetry and thermogravimetric analysis, gel content, water absorption and limiting oxygen index.

Findings

The results showed that the viscosity of the prepared formulation decreased by increasing reactive diluent (DPHA) concentration which leads to improving the coating efficiency. A high concentration of reactive diluent (DPHA) of the cured films shows good resistance against stain, mechanical and thermal properties, which results in an increased glass transition temperature (Tg) and cross-linking density of the films.

Originality/value

The new trispiperazido phosphate-based reactive diluent was used in wood coating formulation, which resulted in excellent flame-retardant properties with higher cross-linked density with good stain resistance. This material can provide a wide range of application for coating industries to produce a glossy finish.

Details

Pigment & Resin Technology, vol. 50 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 December 2023

Xia Sun, Jianben Xu, Caili Yu and Faai Zhang

The purpose of this paper is to synthesize a polyacrylate-based dispersant with a determined target molecular weight for oily systems and to determine the optimal dispersant level…

Abstract

Purpose

The purpose of this paper is to synthesize a polyacrylate-based dispersant with a determined target molecular weight for oily systems and to determine the optimal dispersant level and monomer ratio of the dispersant.

Design/methodology/approach

The dispersant was synthesized by conventional radical polymerization using methacrylic acid, butyl acrylate and dimethylamino ethyl methacrylate as the monomer. It was characterized by Fourier transform infrared spectroscopy, nuclear magnetic hydrogen spectroscopy, gel permeation chromatography and thermogravimetric analysis. The dispersant was used to disperse TiO2, and the performance of the dispersant was evaluated by measuring the viscosity, particle size and dispersive force of the slurry.

Findings

The dispersant exhibited high thermal stability and was successfully anchored to the surface of the TiO2 pigment. When used to disperse a TiO2 slurry, it effectively made the TiO2 slurry more fluid, indicating its strong viscosity-reducing properties. The viscosity, particle sizes and dispersion capabilities of the TiO2 slurry were found to vary depending on the contents and monomer ratios of the dispersant.

Research limitations/implications

P(MAA-BA-DM) dispersant increases the wettability of TiO2 only in oily solvents but not in aqueous solvents.

Practical implications

P(MAA-BA-DM) dispersant makes it easier to disperse TiO2 pigments in oily solvents, increasing the amount of pigment in the solvent and making the preparation of highly pigmented pastes easier.

Originality/value

A dispersant containing suitable carboxyl and tertiary amine groups was initially synthesized to disperse TiO2 in an oily system. The findings are anticipated to be used in the formulation of pigment concentrates, industrial coatings and other solvent-based coatings.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 November 2017

A.U. Chaudhry, Vikas Mittal, M.I. Hashmi and Brajendra Mishra

Inorganic oxide addition can be synergistically beneficial in organic coatings if it can impart anti-corrosion properties and also act as an additive to enhance physical and/or…

Abstract

Purpose

Inorganic oxide addition can be synergistically beneficial in organic coatings if it can impart anti-corrosion properties and also act as an additive to enhance physical and/or chemical properties. The aim of this study was to evaluate the anti-corrosion benefits of nano nickel zinc ferrite (NZF) in the polymer film.

Design/methodology/approach

The time-dependent anti-corrosion ability of NZF (0.12-1.0 per cent w/w NZF/binder), applied on API 5L X-80 carbon steel, was characterized by electrochemical techniques such as open circuit potential, electrochemical impedance spectroscopy, linear polarization resistance and potentiodynamic. Characterization of corrosion layer was done by removing coatings after 216 h of immersion in 3.5 per cent w/v NaCl. Optical microscopy, field emission scanning electron microscopy and X-ray diffraction techniques were used to characterize the corroded surface.

Findings

Corrosion measurements confirm the electrochemical activity by metallic cations on the steel surface during corrosion process which results in improvement of anti-corrosion properties of steel. Moreover, surface techniques show compact corrosion layer coatings and presence of different metallic oxide phases for nanocomposite coatings.

Originality/value

The suggested protection mechanism was explained by the leaching and precipitation of metallic ion on the corroded surface which in turn slowed down the corrosion activity. Furthermore, improvement in barrier properties of rubber-based coatings was confirmed by the enhanced pore resistance. This work indicates that along with a wide range of applications of NZF, anti-corrosion properties can be taken as an addition.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 28 May 2021

Anand Dixit, Kunal Wazarkar and Anagha S. Sabnis

Epoxy acrylate which is commercially utilized for UV curable coatings although has excellent adhesion, flexibility, hardness and chemical resistance, they lack in antimicrobial…

Abstract

Purpose

Epoxy acrylate which is commercially utilized for UV curable coatings although has excellent adhesion, flexibility, hardness and chemical resistance, they lack in antimicrobial properties. Citric acid (CA) is economical as well as a bio-based compound which possess an antimicrobial activity. So, the purpose of this research investigation is the preparation of CA-based oligomer which can be further incorporated with epoxy acrylate and tri (propylene glycol) Diacrylate (TPGDA) to form uv curable coating and the study of its antimicrobial property.

Design/methodology/approach

A UV-curable unsaturated oligomer (CUV) was synthesized from CA and glycidyl methacrylate (GMA). The chemical structure of CUV was confirmed by FTIR, 1H NMR, GPC, hydroxyl value, acid value and iodine value. Further, CUV was assimilated as an antimicrobial as well as crosslinking agent to copolymerize with epoxy acrylate oligomer and a series of UV-cured antimicrobial coatings were concocted by employing UV-curing machine. The consequence of varying the fraction of CUV on the mechanical, chemical, thermal and antimicrobial properties of UV-cured wood coatings was explored.

Findings

Results exhibited good mechanical, chemical and thermal properties. In addition, it was perceived that the zone of inhibition against S. aureus got enlarged with increasing content of CUV in the coating formulation.

Originality/value

The synthesized bio-based CUV reveals an extensive potential to ameliorate the antimicrobial properties of UV-curable coatings.

Details

Pigment & Resin Technology, vol. 50 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 September 2015

Andrea Kalendova and Tereza Hájková

– This paper aims to synthesize anticorrosion pigments containing tungsten for paints intended for corrosion protection of metals.

Abstract

Purpose

This paper aims to synthesize anticorrosion pigments containing tungsten for paints intended for corrosion protection of metals.

Design/methodology/approach

The anticorrosion pigments were prepared by high-temperature, solid-state synthesis from the respective oxides, carbonates and calcium metasilicate. Stoichiometric tungstates and core-shell tungstates with a nonisometric particle shape containing Ca, Sr, Zn, Mg and Fe were synthesized. The pigments were examined by X-ray diffraction analysis and by scanning electron microscopy. Paints based on an epoxy resin and containing the substances at a pigment volume concentration (PVC) = 10 volume per cent were prepared. The paints were subjected to physico-mechanical tests and to tests in corrosion atmospheres. The corrosion test results were compared to those of the paint with a commercial pigment, which is used in many industrial applications.

Findings

The tungstate structure of each pigment was elucidated. The core-shell tungstates exhibit a nonisometric particle shape. The pigments prepared were found to impart a very good anticorrosion efficiency to the paints. A high efficiency was demonstrated for the stoichiometric tungstates containing Fe and Zn and for core-shell tungstates containing Mg and Zn.

Practical implications

The pigments can be used with advantage for the formulation of paints intended for corrosion protection of metals. The pigments also improve the paints’ physical properties.

Originality/value

The use of the pigments in anticorrosion paints for the protection of metals is new. The benefits include the use and the procedure of synthesis of anticorrosion pigments which are free from heavy metals and are acceptable from the environmental protection point of view. Moreover, the core-shell tungstates, whose high efficiency is comparable to that of the stoichiometric tungstates, have lower tungsten content.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 15 December 2020

H. Abd El-Wahab, A.M. Nasser, H.M. Abd ElBary, M. Abd Elrahman and M. Hassanein

This paper aims to study the effect of the new modified dispersing agent, milling time of the properties and particle size distribution (PSD) of inkjet ink formulation for…

Abstract

Purpose

This paper aims to study the effect of the new modified dispersing agent, milling time of the properties and particle size distribution (PSD) of inkjet ink formulation for polyester fabric printing.

Design/methodology/approach

The study’s methods include preparation of different formulations of textile inkjet inks based on different types of dispersing agents, then applying and evaluating the prepared formulations on the polyester fabric. The properties of the prepared ink formulations were analyzed by measuring viscosity, surface tension and particle size. The current work is including the study of the effect of using different doses of different dispersing agents and the milling time on their characteristics. Also, the study was extended to evaluate the printed polyester by using the prepared inks according to light fastness, washing fastness, alkali perspiration fastness and crock fastness.

Findings

The results showed that the used dispersing agents and the different milling time enhanced the viscosity and dynamic surface tension in the accepted range, but it was largely cleared in the PSD which tends to perform the inks on the printhead and prevent clogging of nozzles. Light fastness, washing fastness, alkali perspiration fastness and crock fastness gave good results in agreement with this type of inkjet inks for textile printing.

Research limitations/implications

In this work, good results were obtained with this type of dispersing agent for inkjet ink formulations, but for other dispersing agents, other tests could be performed. The inkjet ink could also be formulated with other additives to prevent clogging of nozzles on the printhead.

Practical implications

These ink formulations could be used for printing on polyester fabric by the inkjet printing.

Originality/value

Recently, there was a considerable interest in the study of the effect of PSD on the inkjet inks to prevent clogging of nozzles on the printhead and to improve the print quality on the textile fiber.

Details

Pigment & Resin Technology, vol. 50 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 4 November 2020

Tantan Shao, Xiaolong Chen and Lijun Chen

Silane cross-linkers have been used to strengthen the mechanical stabilities and friction resistance of plastic products. Therefore, the effect of silane cross-linkers on latex…

Abstract

Purpose

Silane cross-linkers have been used to strengthen the mechanical stabilities and friction resistance of plastic products. Therefore, the effect of silane cross-linkers on latex has been studied through preparing modified self-cross-linking long fluorocarbon polyacrylate latex. In this paper, nonionic surfactant alcohol ether glycoside (AEG1000) and anionic polymerizable surfactant 1-allyloxy-3-(4-nonylphenol)-2-propanol polyoxyethylene (10) ether ammonium sulfate (DNS-86) acted as mixed emulsifier and 3-(methacryloyloxy) propyltrimethoxysilane (KH-570) and bis (2-ethylhexyl) maleate (DOM) were used as functional monomers.

Design/methodology/approach

The modified acrylate polymer latex was synthesized through the semi-continuous seeded emulsion polymerization with methyl methacrylate (MMA), butyl acrylate (BA), dodecafluoroheptyl methacrylate (DFMA) and hydroxypropyl methacrylate (HPMA) as main monomers. Potassium persulfate (KPS) was applied to initiate polymerization reaction, nonionic surfactant AEG1000 and DNS-86 acted as emulsifier, KH-570 and DOM were used as functional monomers, respectively.

Findings

The optimum conditions of synthesizing the modified latex were the following. The mass ratio of monomers containing MMA, BA, DFMA, HPMA, KH-570 and DOM was 13.58:13.58:0.90:1.20:0.15:0.60, the usage of initiator KPS was 0.5% of the total weight of monomers and the amount of emulsifier was 7% of all monomers with AEG1000:DNS-86 = 1:1. The results indicated that the conversion of monomer was 99% and the coagulation was about 2.0%.

Originality/value

The resultant latex was modified silane cross-linker KH-570 and DOM, which positively affected the comprehensive properties of latex and its film. Apart from this, the novel mixed emulsifier was used to improve the size and distribution of latex particles and reduce environmental problems caused by the use of emulsifiers.

Details

Pigment & Resin Technology, vol. 51 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 17 May 2022

Dongjun Lv, Xiaolei Zhang, Guocheng Gao, Jing Tang, Zilong Zhang, Yihui Liu, Ran Wang and LeiFang Liu

The purpose of this study was the preparation of a poly(styrene-co-maleic anhydride)-g-polyetheramine (SMA-g-PEA) hyperdispersant that reduces the viscosity of the system and…

Abstract

Purpose

The purpose of this study was the preparation of a poly(styrene-co-maleic anhydride)-g-polyetheramine (SMA-g-PEA) hyperdispersant that reduces the viscosity of the system and improves the colouring intensities of pigments.

Design/methodology/approach

PEA of specific quality was dissolved in propylene glycol methyl ether. SMA was then added according to the required mass ratio. The solution was refluxed for 10 h under a stream of protective N2. The prepared hyperdispersant was then characterised by Fourier-transform infrared, UV–visible and 1H NMR spectroscopies, gel-permeation chromatography and thermogravimetry.

Findings

PEA was successfully grafted onto the SMA polymer and the synthesised product was found to be thermally stable. The copolymer with a 6:1 mass ratio is the best dispersant and was used to disperse carbon black, phthalocyanine blue and permanent violet in water-based systems, which helps to improve the application performance of each pigment by reducing the viscosity of the system and improving the colouring intensity of the pigment. The water dispersion is stable and does not exhibit an increase in viscosity after seven days of oven aging at 50°C.

Originality/value

SMA-g-PEA water-based hyperdispersants were successfully synthesised. The prepared hyperdispersants help to improve the application performance of each studied pigment by reducing the viscosity of the system and improving the colouring intensity of the pigment.

Article
Publication date: 5 March 2018

Sofia Bogdan, Cecilia Deya, Oscar Micheloni, Natalia Bellotti and Roberto Romagnoli

This paper aims to study five vegetables extracts as possible additives to control bacterial growth on indoor waterborne paints. The extracts were obtained from the weeds Raphanus…

Abstract

Purpose

This paper aims to study five vegetables extracts as possible additives to control bacterial growth on indoor waterborne paints. The extracts were obtained from the weeds Raphanus sativus, Rapistrum rugosum, Sinapis arvensis, Nicotiana longiflora and Dipsacus fullonum, used in traditional medicine as antimicrobial compounds.

Design/methodology/approach

Weeds extracts were characterized by Fourier transform infrared spectroscopy and UV–Vis spectrophotometry. Their antibacterial activity against Escherichia coli and Staphylococcus aureus was also determined. Afterward, selected extracts were incorporated in waterborne paint formulations. The paints’ antimicrobial activity was assessed against S. aureus, monitoring biofilm formation by environmental scanning electron microscopy.

Findings

As a general rule, results showed that tested paints were efficient in inhibiting biofilm formation, especially that formulated with Nicotiana longiflora.

Practical implications

The tested paints can be used to protect walls from microbial colonization, which shortened coatings’ useful life by discoloration and/or degradation. Concomitantly, indoor microbial colonization by aerosols could be also diminished. This is especially important in places that should have high standards of environmental hygiene, as in the food industry, health-care and sanitary centers.

Originality/value

The main value of this research was to study the antimicrobial activity of weeds extracts and to incorporate them in waterborne paints to diminish bacterial biofilm formation. This biofilm discolors and degrades the paint, and causes health problems. The use of natural compounds in coatings is increasing because of the convenience of using renewable sources, such as natural antimicrobials, in paint formulations.

Details

Pigment & Resin Technology, vol. 47 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 191